Annonces Google

Python Avancé

Télécharger le cours complet


  1. Les modules en Python
  2. Le module OS
  3. Gestion des fichiers en Python
  4. Fichier de configuration .ini
  5. Python et bases de données SQLite
  6. Python et bases de données MySql
  7. DB Browser for SQLite
  8. Interface Graphique avec Tkinter
  9. La bibliothèque d'images PILLOW
  10. Le module de style tkinter.ttk
  11. Projet: Création d'un éditeur de texte
  12. Interface graphique avec wxPython
  13. Le framework Django

Télécharger le cours complet

Utilisateurs en ligne

Users: 2 Guests, 2 Bots

Feuilles de Style CSS

Tutoriels Informatiques

TICE & Multimédias

Math-pour-Informatiques

Anglais pour débutants

Nous somme sur Facebook

  


Archives mensuelles : septembre 2016

1 – Topologie initiale

 

Topologie initiale et finale, topologie limite inductive Topologie initiale <definition/>Soient X un ensemble non vide et (X_{i})_{i∈I} une famille d'espaces topologiques, et f_{i}:X→X_{i} une famille d'applications. La topologie initiale de (X,(f_{i})_{i∈I}) est la moin fine rendant continue les applications f_{i}. <example/>Si X=Π_{i∈I}X_{i} alors la topologie produit sur X n'est autre que la topologie initiale associée à la famille des projections p_{i}:X→X_{i}. <example/>Soient X un ensemble et Y un espace topologique et Y^{X} l'ensemble des applications de X dans Y. Pour tout x∈X notons ev_{x} l'application d'évaluation ev_{x}:Y^{X}→Y f↦ev_{x}(f)=f(x). Alors la topologie de la convergence simple sur Y^{X} n'est autre que la topologie initiale associé à (Y^{X},(ev_{x})_{x∈X}) <proposition/>La topologie initiale de (X,(f_{i})_{i∈I}) est la topologie engendrée par les ensembles {f_{i}⁻¹(O_{i}),i∈I,O_{i} ouvert de X_{i}} <proposition/>Soit Y un espace topologique et τ la topologie initiale assoiée à la famille (X,(f_{i})_{i∈I}). Une application f:Y→(X,τ) est continue si et seulement si f_{i}∘f est continue pour tout i∈I. Continuer la lecture

1 – Généralités sur les applications

Applications Généralités sur les applications Dans tout ce paragraphe E et F designe deux ensembles non vides. <definition/>On appelle application de E dans F toute relation f:E→F liant tout x de E avec un et un seul élément y de F. et on écrit y=f(x) et on dit que y est l'image de x par l'application f et que x est l'antécédant de y. [application.png] <definition/>On dit que deux applications f:E→F et g:E′→F′ sont égales si E=E′ et F=F′ et ∀x∈E=E′ f(x)=g(x)

Continuer la lecture

1 – Notions d’ensembles

Ensembles et applications Théorie des ensembles Notion d'ensemble <definition/>Un ensemble est une collection d'objets. Les objets qui forment l'ensemble sont appelés les éléments de cet ensemble. <example/>{1,2}, {(1/2),-7,13,((-2)/7)}, {voiture, moto, train} sont des ensembles. 1 et 2 sont des éléments de l'ensemble {1,2} et on écrit 1∈{1,2} ( lire 1 appartient à E) et 9∉{1,2} ( lire 9 n'appartient pas à {1,2}) <definition/>L'ensemble qui ne contient aucun élément est appelé l'ensemble vide et est noté . <definition/>On dit qu'un ensemble A est un sous ensemble ou une partie de E si tout élément de A est un élément de E, et on note A⊂E <example/>A={3,-11} est une partie de E={1,3,8,-11,37}

Continuer la lecture

Continuer la lecture

Cours de mathématiques  seconde (https://fr.wikiversity.org)

Source : https://fr.wikiversity.org Continuer la lecture

Nous sommes sur Facebook