Transformation naturelle

1. Transformation naturelle entre deux foncteurs

16-transformation naturelle entre deux foncteurs : En théorie des catégories, une transformation naturelle permet de transformer un foncteur en un autre tout en respectant la structure interne (i.e. la composition des morphismes) des catégories considérées. On peut ainsi la voir comme un morphisme de foncteurs. Définition Soient C et D deux catégories, F et G deux foncteurs covariants de C dans D. Une transformation naturelle η de F vers G est la donnée, pour tout objet X de C, d'un morphisme de D : \eta_X : F(X) \rightarrow G(X), telle que pour tous objets X et Y de C et tout morphisme f de X dans Y, le diagramme suivant soit commutatif : Natural transformation.svg On peut de même définir la notion de transformation naturelle entre deux foncteurs contravariants en inversant uniquement le sens des flèches horizontales du diagramme ci-dessus. Si pour tout objet X de C, ηX est un isomorphisme, on dit que η est une « équivalence naturelle » ou un « isomorphisme naturel ».

2. Isomorphisme naturelle

17-isomorphisme-naturel : If both F and G are contravariant, the horizontal arrows in this diagram are reversed. If η is a natural transformation from F to G, we also write η : F → G or η : F ⇒ G. This is also expressed by saying the family of morphisms ηX : F(X) → G(X) is natural in X. If, for every object X in C, the morphism ηX is an isomorphism in D, then η is said to be a natural isomorphism (or sometimes natural equivalence or isomorphism of functors). Two functors F and G are called naturally isomorphic or simply isomorphic if there exists a natural isomorphism from F to G. An infranatural transformation η from F to G is simply a family of morphisms ηX: F(X) → G(X). Thus a natural transformation is an infranatural transformation for which ηY ∘ F(f) = G(f) ∘ ηX for every morphism f : X → Y. The naturalizer of η, nat(η), is the largest subcategory of C containing all the objects of C on which η restricts to a natural transformation.

3. Exemples et propriétés d'une transformation naturelle

18-exemples et propriétés d'une transformation naturelle : Operations with natural transformations If η : F → G and ε : G → H are natural transformations between functors F,G,H : C → D, then we can compose them to get a natural transformation εη : F → H. This is done componentwise: (εη)X = εXηX. This "vertical composition" of natural transformation is associative and has an identity, and allows one to consider the collection of all functors C → D itself as a category (see below under Functor categories). Natural transformations also have a "horizontal composition". If η : F → G is a natural transformation between functors F,G : C → D and ε : J → K is a natural transformation between functors J,K : D → E, then the composition of functors allows a composition of natural transformations ηε : JF → KG. This operation is also associative with identity, and the identity coincides with that for vertical composition. The two operations are related by an identity which exchanges vertical composition with horizontal composition. If η : F → G is a natural transformation between functors F,G : C → D, and H : D → E is another functor, then we can form the natural transformation Hη : HF → HG by defining

 

Younes Derfoufi
CRMEF OUJDA

Leave a Reply