Cours Python
Développement Web
  1. Introduction au langage HTML
  2. Structure d'un document HTML
  3. Mise en forme d’un document HTML
  4. Liens hypertexte
  5. Insertion d’images
  6. Les attributs de la balise BODY
  7. Les tableaux HTML
  8. Les listes HTML
  9. Les Frames HTML
  10. Les formulaires HTML
  11. Les caractères spéciaux HTML
  12. Ressources et références HTML
  13. Exercices HTML avec correction
  1. Introduction au langage CSS
  2. Propriétés d'un sélecteur
  3. La propriété Text CSS
  4. La propriété background CSS
  5. La propriété Font CSS
  6. La propriété border CSS
  7. Propriétés margin et padding
  8. Propriétés Height & Width
  9. Class et les ID CSS

Javascript Basique
  1. Introduction au langage Javascript
  2. Variables, fonctions et operateurs Javascript
  3. Les structures de contrôle et les boucles Javascript
  4. Les événements Javascript
  5. Le modèle Objet du Javascript
  6. L'objet array Javascript
Framework JQuery
  1. Introduction au Framework jQuery
  2. Premier pas avec le framework jQuery
  3. Les Sélecteurs jQuery
  1. Introduction au langage PHP
  2. Premier programme php
  3. Variables et Fonctions php
  4. Opérateurs arithmétiques et logiques
  5. Les structures de contrôle en php
  6. Les tableaux en php
  7. Control des formulaires en php
  8. Upload des fichiers en php
  9. Gestion des dossiers et des fichiers en php
  10. Colorisation syntaxique en php
  11. Cookies php
  12. Les variables globales php
  13. Sessions php
  14. Les variables php d’environnement
  15. Les classes et la poo php
  16. La librairie php_gd2 des images
  17. Lecture d’un fichier xml en php
  18. Les expressions régulières en php
  19. Moteurs de template php : smarty et fast temp…
  1. Introduction au Framework PHP Laravel
  • Installation Laravel 8 & premier projet
    1. Langage MySql
    2. Introduction au langage MySql
    3. Installation du Serveur MySql
    4. Manipulation des bases de donnée MySql
    5. Manipulation desTables MySql
    6. Insértion de données MySql
    1. Installation Wordpress
    2. Modification du theme Wordpress
    3. Installation d'un plugin
    4. Gestion des catégories
    5. Gestion des articles
    6. Gestion des menus Wordpress
    7. Gestion des pages
    8. Gestion des Plugins
    9. Gestion des Widgets
    10. Gestion des Médias
    11. Gestion des commentaires
    12. Création formulaire de contact
    13. Outil Importation & exportation
    14. Gestion des extensions
    15. Réglage et paramètres
    1. Introduction à Joomla
    2. Installation Joomla
    3. Architecture de Joomla
    Bases de données
    TICE & Multimédia
    Math Pour Informatiques
    Utilisateurs/utilisatrices: 3 Guests, 4 Bots

    1. Exemples et définition d'un pullback

    16-pullback : In category theory, a branch of mathematics, a pullback (also called a fiber product, fibre product, fibered product or Cartesian square) is the limit of a diagram consisting of two morphisms f : X → Z and g : Y → Z with a common codomain; it is the limit of the cospan X→ Z ← Y. The pullback is often written P = X ×Z Y. The categorical dual of a pullback is a called a pushout. Remarks opposite to the above apply: the pushout is a coproduct with additional structure.

    17-universal-property-o-pullback : Explicitly, the pullback of the morphisms f and g consists of an object P and two morphisms p1 : P → X and p2 : P → Y for which the diagram Categorical pullback commutes. Moreover, the pullback (P, p1, p2) must be universal with respect to this diagram. That is, for any other such triple (Q, q1, q2) for which the following diagram commutes, there must exist a unique u : Q → P (called a mediating morphism) such that p_2 \circ u=q_2, \qquad p_1\circ u=q_1

    18-exemple-de-pullback : In mathematics, a pullback bundle or induced bundle[1][2][3] is a useful construction in the theory of fiber bundles. Given a fiber bundle π : E → B and a continuous map f : B′ → B one can define a "pullback" of E by f as a bundle f*E over B′. The fiber of f*E over a point b′ in B′ is just the fiber of E over f(b′). Thus f*E is the disjoint union of all these fibers equipped with a suitable topology.

    2. Pushout

    20-definition-de-pushout : In category theory, a branch of mathematics, a pushout (also called a fibered coproduct or fibered sum or cocartesian square or amalgamated sum) is the colimit of a diagram consisting of two morphisms f : Z → X and g : Z → Y with a common domain: it is the colimit of the span X \leftarrow Z \rightarrow Y. The pushout is the categorical dual of the pullback. 1. Suppose that X, Y, and Z as above are sets, and that f : Z → X and g : Z → Y are set functions. The pushout of f and g is the disjoint union of X and Y, where elements sharing a common preimage (in Z) are identified, together with the morphisms i1 , i2 from X and Y, i.e. P = X \coprod Y \Bigg/ \sim where ~ is the finest equivalence relation (cf. also this) such that i1 ∘f (z) ~ i2 ∘g(z). 2. The construction of adjunction spaces is an example of pushouts in the category of topological spaces. More precisely, if Z is a subspace of Y and g : Z → Y is the inclusion map we can "glue" Y to another space X along Z using an "attaching map" f : Z → X. The result is the adjunction space X \cup_{f} Y which is just the pushout of f and g. More generally, all identification spaces may be regarded as pushouts in this way.

    21-propriété-universelle-de-pushout : Universal property Explicitly, the pushout of the morphisms f and g consists of an object P and two morphisms i1 : X → P and i2 : Y → P such that the diagram Categorical pushout.svg commutes and such that (P, i1, i2) is universal with respect to this diagram. That is, for any other such set (Q, j1, j2) for which the following diagram commutes, there must exist a unique u : P → Q also making the diagram commute

    3. Propriétés d'un pullback

    19-propriétés d'un pullback : Properties Whenever X ×Z Y exists, then so does Y ×Z X and there is an isomorphism X ×Z Y ≅ Y ×Z X. Monomorphisms are stable under pullback: if the arrow f above is monic, then so is the arrow p2. For example, in the category of sets, if X is a subset of Z, then, for any g : Y → Z, the pullback X ×Z Y is the inverse image of X under g\circ p_2 . Isomorphisms are also stable, and hence, for example, X ×X Y ≅ Y for any map Y → X. Any category with pullbacks and products has equalizers.


    Younes Derfoufi

    Laisser un commentaire