Cours Python
Développement Web
  1. Introduction au langage HTML
  2. Structure d'un document HTML
  3. Mise en forme d’un document HTML
  4. Liens hypertexte
  5. Insertion d’images
  6. Les attributs de la balise BODY
  7. Les tableaux HTML
  8. Les listes HTML
  9. Les Frames HTML
  10. Les formulaires HTML
  11. Les caractères spéciaux HTML
  12. Ressources et références HTML
  13. Exercices HTML avec correction
  1. Introduction au langage CSS
  2. Propriétés d'un sélecteur
  3. La propriété Text CSS
  4. La propriété background CSS
  5. La propriété Font CSS
  6. La propriété border CSS
  7. Propriétés margin et padding
  8. Propriétés Height & Width
  9. Class et les ID CSS

Javascript Basique
  1. Introduction au langage Javascript
  2. Variables, fonctions et operateurs Javascript
  3. Les structures de contrôle et les boucles Javascript
  4. Les événements Javascript
  5. Le modèle Objet du Javascript
  6. L'objet array Javascript
Framework JQuery
  1. Introduction au Framework jQuery
  2. Premier pas avec le framework jQuery
  3. Les Sélecteurs jQuery
  1. Introduction au langage PHP
  2. Premier programme php
  3. Variables et Fonctions php
  4. Opérateurs arithmétiques et logiques
  5. Les structures de contrôle en php
  6. Les tableaux en php
  7. Control des formulaires en php
  8. Upload des fichiers en php
  9. Gestion des dossiers et des fichiers en php
  10. Colorisation syntaxique en php
  11. Cookies php
  12. Les variables globales php
  13. Sessions php
  14. Les variables php d’environnement
  15. Les classes et la poo php
  16. La librairie php_gd2 des images
  17. Lecture d’un fichier xml en php
  18. Les expressions régulières en php
  19. Moteurs de template php : smarty et fast temp…
  1. Introduction au Framework PHP Laravel
  • Installation Laravel 8 & premier projet
    1. Langage MySql
    2. Introduction au langage MySql
    3. Installation du Serveur MySql
    4. Manipulation des bases de donnée MySql
    5. Manipulation desTables MySql
    6. Insértion de données MySql
    1. Installation Wordpress
    2. Modification du theme Wordpress
    3. Installation d'un plugin
    4. Gestion des catégories
    5. Gestion des articles
    6. Gestion des menus Wordpress
    7. Gestion des pages
    8. Gestion des Plugins
    9. Gestion des Widgets
    10. Gestion des Médias
    11. Gestion des commentaires
    12. Création formulaire de contact
    13. Outil Importation & exportation
    14. Gestion des extensions
    15. Réglage et paramètres
    1. Introduction à Joomla
    2. Installation Joomla
    3. Architecture de Joomla
    Bases de données
    TICE & Multimédia
    Math Pour Informatiques
    Utilisateurs/utilisatrices: 9 Guests, 10 Bots

    1. Egalisateur ( equalizer)

    22-egalisateur-equalizer : Let X and Y be sets. Let f and g be functions, both from X to Y. Then the equaliser of f and g is the set of elements x of X such that f(x) equals g(x) in Y. Symbolically: \mathrm{Eq}(f,g) := \{x \in X \mid f(x) = g(x)\}\mbox{.}\! The equaliser may be denoted Eq(f,g) or a variation on that theme (such as with lowercase letters "eq"). In informal contexts, the notation {f = g} is common. The definition above used two functions f and g, but there is no need to restrict to only two functions, or even to only finitely many functions. In general, if F is a set of functions from X to Y, then the equaliser of the members of F is the set of elements x of X such that, given any two members f and g of F, f(x) equals g(x) in Y. Symbolically: \mathrm{Eq}(\mathcal{F}) := \{x \in X \mid \forall{f,g \,}{\in}\, \mathcal{F}, \; f(x) = g(x)\}\mbox{.}\! This equaliser may be written as Eq(f,g,h,...) if \mathcal{F} is the set {f,g,h,...}. In the latter case, one may also find {f = g = h = ···} in informal contexts.

    2. Coégalisateur ( coequalizer )

    23-coégalisateur-coequalizer : Equalisers can be defined by a universal property, which allows the notion to be generalised from the category of sets to arbitrary categories. In the general context, X and Y are objects, while f and g are morphisms from X to Y. These objects and morphisms form a diagram in the category in question, and the equaliser is simply the limit of that diagram. In more explicit terms, the equaliser consists of an object E and a morphism eq : E → X satisfying f \circ eq = g \circ eq, and such that, given any object O and morphism m : O → X, if f \circ m = g \circ m, then there exists a unique morphism u : O → E such that eq \circ u = m.

    3. Noyaux et conoyaux

    24-noyaux-conoyaux : Difference kernels A binary equaliser (that is, an equaliser of just two functions) is also called a difference kernel. This may also be denoted DiffKer(f,g), Ker(f,g), or Ker(f − g). The last notation shows where this terminology comes from, and why it is most common in the context of abstract algebra: The difference kernel of f and g is simply the kernel of the difference f − g. Furthermore, the kernel of a single function f can be reconstructed as the difference kernel Eq(f,0), where 0 is the constant function with value zero. Of course, all of this presumes an algebraic context where the kernel of a function is its preimage under zero; that is not true in all situations. However, the terminology "difference kernel" has no other meaning.


    Younes Derfoufi

    Laisser un commentaire