Cours Python

 CopyrightFrance.com
Développement Web
  1. Introduction au langage HTML
  2. Structure d'un document HTML
  3. Mise en forme d’un document HTML
  4. Liens hypertexte
  5. Insertion d’images
  6. Les attributs de la balise BODY
  7. Les tableaux HTML
  8. Les listes HTML
  9. Les Frames HTML
  10. Les formulaires HTML
  11. Les caractères spéciaux HTML
  12. Ressources et références HTML
  13. Exercices HTML avec correction
  1. Introduction au langage CSS
  2. Propriétés d'un sélecteur
  3. La propriété Text CSS
  4. La propriété background CSS
  5. La propriété Font CSS
  6. La propriété border CSS
  7. Propriétés margin et padding
  8. Propriétés Height & Width
  9. Class et les ID CSS

Javascript Basique
  1. Introduction au langage Javascript
  2. Variables, fonctions et operateurs Javascript
  3. Les structures de contrôle et les boucles Javascript
  4. Les événements Javascript
  5. Le modèle Objet du Javascript
  6. L'objet array Javascript
Framework JQuery
  1. Introduction au Framework jQuery
  2. Premier pas avec le framework jQuery
  3. Les Sélecteurs jQuery
  1. Introduction au langage PHP
  2. Premier programme php
  3. Variables et Fonctions php
  4. Opérateurs arithmétiques et logiques
  5. Les structures de contrôle en php
  6. Les tableaux en php
  7. Control des formulaires en php
  8. Upload des fichiers en php
  9. Gestion des dossiers et des fichiers en php
  10. Colorisation syntaxique en php
  11. Cookies php
  12. Les variables globales php
  13. Sessions php
  14. Les variables php d’environnement
  15. Les classes et la poo php
  16. La librairie php_gd2 des images
  17. Lecture d’un fichier xml en php
  18. Les expressions régulières en php
  19. Moteurs de template php : smarty et fast temp…
  1. Introduction au Framework PHP Laravel
  • Installation Laravel 8 & premier projet
    1. Langage MySql
    2. Introduction au langage MySql
    3. Installation du Serveur MySql
    4. Manipulation des bases de donnée MySql
    5. Manipulation desTables MySql
    6. Insértion de données MySql
    1. Installation Wordpress
    2. Modification du theme Wordpress
    3. Installation d'un plugin
    4. Gestion des catégories
    5. Gestion des articles
    6. Gestion des menus Wordpress
    7. Gestion des pages
    8. Gestion des Plugins
    9. Gestion des Widgets
    10. Gestion des Médias
    11. Gestion des commentaires
    12. Création formulaire de contact
    13. Outil Importation & exportation
    14. Gestion des extensions
    15. Réglage et paramètres
    1. Introduction à Joomla
    2. Installation Joomla
    3. Architecture de Joomla
    Bases de données
    TICE & Multimédia
    Math Pour Informatiques
    UserOnline
    Utilisateurs/utilisatrices: 4 Guests, 2 Bots

    1. Produit direct dans une catégorie

    La somme est la propriété duale du produit : la somme correspond au produit de la catégorie opposée. On dit parfois coproduit plutôt que somme. On utilise parfois les notions de catégorie distributive (en) et de catégorie linéaire pour désigner deux types de catégories fréquentes, mais mutuellement exclusives (sauf cas trivaux, comme des catégories à un seul objet): une catégorie est distributive lorsque le produit est distributif sur le coproduit. Ce dernier est alors souvent appelé somme, par analogie avec l'arithmétique élémentaire ; Soit C une catégorie et (X_i)_{i\in I} une famille d'objets de C. On cherche un objet X ainsi qu'une famille de morphismes \phi_i : X_i\to X tel que pour tout objet Y de C et pour toute famille de morphismes f_i : X_i\to Y, il existe un unique morphisme f:X\to Y tel que pour tout indice i, on a f\circ\phi_i =f_i. Si un tel objet X existe, on l'appelle somme des (X_i)_{i\in I}. Lorsqu'elle existe, la somme des Xi représente le foncteur qui à un objet Y de C associe le produit cartésien \prod_{i\in I}Hom(X_i,Y).

    1. Somme directe dans une catégorie

    somme-directe-dans-une-catégorie : Soit C une catégorie et (X_i)_{i\in I} une famille d'objets de C. On cherche un objet X ainsi qu'une famille de morphismes \phi_i : X_i\to X tel que pour tout objet Y de C et pour toute famille de morphismes f_i : X_i\to Y, il existe un unique morphisme f:X\to Y tel que pour tout indice i, on a f\circ\phi_i =f_i. Si un tel objet X existe, on l'appelle somme des (X_i)_{i\in I}. Lorsqu'elle existe, la somme des Xi représente le foncteur qui à un objet Y de C associe le produit cartésien \prod_{i\in I}Hom(X_i,Y).

    1. Exemple de sommes et produits direct dans une catégorie

    exemple-de-somme-et-produit-direct-dans-une-categorie : La somme indexée par l'ensemble vide est l'objet initial. Dans la catégorie des ensembles, la somme est la réunion disjointe. La réunion disjointe de la famille (X_i)_{i\in I} est l'ensemble des couples (i,x) où x\in X_i avec \varphi_i : x \mapsto (i,x). Dans la catégorie des espaces topologiques, la somme topologique existe et commute avec le foncteur d'oubli. Elle s'obtient en munissant l'ensemble ci-dessus d'une topologie adéquate. Dans la catégorie des groupes, la somme s'appelle produit libre. Elle ne commute pas avec le foncteur d'oubli. Dans la catégorie des modules sur un anneau fixé, la somme est la somme directe externe. Elle ne commute pas avec le foncteur d'oubli. On peut raffiner la notion de somme avec la somme amalgamée.

     

    Younes Derfoufi
    CRMEF OUJDA

    Laisser un commentaire