Geogebra: Présentation Récapitulative Filières Informatique & Mathématique

Y. Derfoufi Formateur au CRMEF Oujda

CRMEF Oujda

Novembre 2020

1. Comment tracer un objet: point, vecteur... sur Geogebra

Pour créer un objet sur Geogebra (point vecteur, ...), il suffit d'introduire son nom suivi de ses paramètres dans la zone de saisie de Geogebra

Traçage des points et des vecteurs

1 Une lettre **majuscule** A = (2,3) permet de créer le point de coordonnées (2,3).

- 1 Une lettre **majuscule** A = (2,3) permet de créer le point de coordonnées (2,3).
- 2 $\mathbf{a} = \mathbf{x}(\mathbf{A})$ et $\mathbf{b} = \mathbf{y}(\mathbf{A})$ permet de créer respectivement, les variables abscisse et ordonnée du point A

- 1 Une lettre **majuscule** A = (2,3) permet de créer le point de coordonnées (2,3).
- 2 $\mathbf{a} = \mathbf{x}(\mathbf{A})$ et $\mathbf{b} = \mathbf{y}(\mathbf{A})$ permet de créer respectivement, les variables abscisse et ordonnée du point A
- 3 Une lettre **minuscule u** = $(\mathbf{2}, -\mathbf{1})$ permet de créer le vecteur de coordonnées (2, -1).

- 1 Une lettre **majuscule** A = (2,3) permet de créer le point de coordonnées (2,3).
- 2 $\mathbf{a} = \mathbf{x}(\mathbf{A})$ et $\mathbf{b} = \mathbf{y}(\mathbf{A})$ permet de créer respectivement, les variables abscisse et ordonnée du point A
- 3 Une lettre **minuscule u** = (2, -1) permet de créer le vecteur de coordonnées (2, -1).
- 4 Si deux points A et B sont déjà crées, la commande $\mathbf{v} = \mathbf{Vecteur}[\mathbf{A}, \mathbf{B}]$ permet de créer le vecteur \overrightarrow{AB} d'origine A et d'extrêmité B.

- 1 Une lettre **majuscule** A = (2,3) permet de créer le point de coordonnées (2,3).
- 2 $\mathbf{a} = \mathbf{x}(\mathbf{A})$ et $\mathbf{b} = \mathbf{y}(\mathbf{A})$ permet de créer respectivement, les variables abscisse et ordonnée du point A
- 3 Une lettre **minuscule** $\mathbf{u} = (\mathbf{2}, -\mathbf{1})$ permet de créer le vecteur de coordonnées (2, -1).
- 4 Si deux points A et B sont déjà crées, la commande $\mathbf{v} = \mathbf{Vecteur}[\mathbf{A}, \mathbf{B}]$ permet de créer le vecteur \overrightarrow{AB} d'origine A et d'extrêmité B.
- 5 M = x + yi permet de créer le point M d'affixe z = x + iy.

Traçage des segments et des droites

6 La commande Segment[A, B] permet de tracer le segment d'origine A et d'extrêmité B.

- 6 La commande Segment[A, B] permet de tracer le segment d'origine A et d'extrêmité B.
- 7 **Droite**[A, B] permet de tracer la droite (AB).

- 6 La commande Segment[A, B] permet de tracer le segment d'origine A et d'extrêmité B.
- 7 Droite[A, B] permet de tracer la droite (AB).
- 8 **DemiDroite**[A, B] permet de tracer la demie droite d'origine A et passant par B.

- 6 La commande Segment[A, B] permet de tracer le segment d'origine A et d'extrêmité B.
- 7 Droite[A, B] permet de tracer la droite (AB).
- 8 **DemiDroite**[A, B] permet de tracer la demie droite d'origine A et passant par B.
- 9 Pour tracer un triangle (ABC), on utilise la commande **Polygone**[A, B, C].

- 6 La commande Segment[A, B] permet de tracer le segment d'origine A et d'extrêmité B.
- 7 **Droite**[A, B] permet de tracer la droite (AB).
- 8 **DemiDroite**[A, B] permet de tracer la demie droite d'origine A et passant par B.
- 9 Pour tracer un triangle (ABC), on utilise la commande **Polygone**[A, B, C].
- 10 Régionnement du plan : la commande 2x + 3y < 2 permet de représenter l'ensemble des points M(x,y) vérifiant l'inéquation 2x + 3y 2 < 0. Pour un système d'inéquations, on utilise le symbol logique && : exemple 2x + 3y < 2 && x y > 1 permet de représenter le régionnement du plan formé des points M(x,y) vérifiants : 2x + 3y 2 < 0 et x y 1 > 0

Milieu et barycentre

11 La commande $I = \frac{A+B}{2}$ permet de tracer le milieur I du segment [A, B].

Milieu et barycentre

- 11 La commande $I = \frac{A+B}{2}$ permet de tracer le milieur I du segment [A, B].
- 12 $G = \frac{\alpha A + \beta B + \gamma C}{\alpha + \beta + \gamma}$ permet de tracer le barycentre du système pondéré $\{(A, \alpha), (B, \beta), (C, \gamma)\}$

Milieu et barycentre

- 11 La commande $I = \frac{A+B}{2}$ permet de tracer le milieur I du segment [A, B].
- 12 $G = \frac{\alpha A + \beta B + \gamma C}{\alpha + \beta + \gamma}$ permet de tracer le barycentre du système pondéré $\{(A, \alpha), (B, \beta), (C, \gamma)\}$
- 13 **Exemple** $G = \frac{A+B+C}{3}$ est le centre de gravité du triangle (ABC)

Traçage des cercles

14 La commande **Cercle**[A, B] permet de tracer le cercle de centreA et qui passe par B.

- 14 La commande **Cercle**[\mathbf{A} , \mathbf{B}] permet de tracer le cercle de centreA et qui passe par B.
- 15 **DemiCercle**[A, B] permet de tracer le demi-cercle de diamètre[A, B].

- 14 La commande **Cercle**[\mathbf{A} , \mathbf{B}] permet de tracer le cercle de centreA et qui passe par B.
- 15 **DemiCercle** [A, B] permet de tracer le demi-cercle de diamètre [A, B].
- 16 **Cercle** [A, r] permet de tracer le cercle de centre A et de rayon r.

- 14 La commande **Cercle**[\mathbf{A} , \mathbf{B}] permet de tracer le cercle de centreA et qui passe par B.
- 15 **DemiCercle** [A, B] permet de tracer le demi-cercle de diamètre [A, B].
- 16 **Cercle**[\mathbf{A} , \mathbf{r}] permet de tracer le cercle de centre A et de rayon r.
- 17 **Cercle**[A, B, C], permet de tracer le cercle circonscrit au triangle (ABC).

- 14 La commande **Cercle**[\mathbf{A} , \mathbf{B}] permet de tracer le cercle de centreA et qui passe par B.
- 15 **DemiCercle**[A, B] permet de tracer le demi-cercle de diamètre[A, B].
- 16 **Cercle**[A, r] permet de tracer le cercle de centre A et de rayon r.
- 17 **Cercle**[**A**, **B**, **C**], permet de tracer le cercle circonscrit au triangle (ABC).
- 18 On peut aussi tracer un cercle à partir de son équation : $C: (x-1)^2 + (y-2)^2 = 4$

1 La saisie d'une lettre minuscule permet de créer une variable réelle (ou paramètre)

- 1 La saisie d'une lettre minuscule permet de créer une variable réelle (ou paramètre)
- 2 Pour créer une fonction, il suffit de saisir sa formule : exemple la saisie de $f(x) = x^2 + 3x + 2$ permet de créer et tracer la parabole d'équation $y = x^2 + 3x + 2$.

- 1 La saisie d'une lettre minuscule permet de créer une variable réelle (ou paramètre)
- 2 Pour créer une fonction, il suffit de saisir sa formule : exemple la saisie de $f(x) = x^2 + 3x + 2$ permet de créer et tracer la parabole d'équation $y = x^2 + 3x + 2$.
- 3 La commande courbe permet de tracer des courbes paramètriques : exemple : Courbe(cos(t), tsin(t), t, 0, π)

- 1 La saisie d'une lettre minuscule permet de créer une variable réelle (ou paramètre)
- 2 Pour créer une fonction, il suffit de saisir sa formule : exemple la saisie de $f(x) = x^2 + 3x + 2$ permet de créer et tracer la parabole d'équation $y = x^2 + 3x + 2$.
- 3 La commande courbe permet de tracer des courbes paramètriques : exemple : Courbe(cos(t), tsin(t), t, 0, π)
- 4 La commande Dérivée permet de calculer la dérivée d'une fonction: exemple : $g = Dérivée[2x^3 + x^2 + 3x + 1]$ crée la fonction dérivée $g(x) = 6x^2 + 2x + 3$. Dérivée[f, n] permet de calculer la dérivée $n^{\grave{e}me}$ de f exemple : $Dérivée[\exp(\sin(x)), 2]$ donne $\cos^2(x)e^{\sin(x)} \sin(x)e^{\sin(x)}$

5 Tangente à la courbe : Tangente $[\mathbf{A}, \mathbf{f}]$: trace la tangente à C_f en x = x(A). Pour une courbe C, Tangente $[\mathbf{A}, \mathbf{C}]$: trace la tangente à la courbe C au point A de la courbe.

- 5 Tangente à la courbe : Tangente $[\mathbf{A}, \mathbf{f}]$: trace la tangente à C_f en x = x(A). Pour une courbe C, Tangente $[\mathbf{A}, \mathbf{C}]$: trace la tangente à la courbe C au point A de la courbe.
- 6 Formule de Taylor : PolynômeTaylor[f, a, n] : Renvoie le développement de Taylor d'ordre n de la fonction f à partir du point x = a. Exemple : PolynômeTaylor[sin(x), 0, 7] renvoie $p(x) = x \frac{x^3}{3!} + \frac{x^5}{5!} \frac{x^7}{7!}$

- 5 Tangente à la courbe : Tangente $[\mathbf{A}, \mathbf{f}]$: trace la tangente à C_f en x = x(A). Pour une courbe C, Tangente $[\mathbf{A}, \mathbf{C}]$: trace la tangente à la courbe C au point A de la courbe.
- 6 Formule de Taylor : PolynômeTaylor[f, a, n] : Renvoie le développement de Taylor d'ordre n de la fonction f à partir du point x = a. Exemple : PolynômeTaylor[sin(x), 0, 7] renvoie p(x) = x x³/_{3!} + x⁵/_{5!} x⁷/_{7!}
- 7 La commande Intégrale permet de calculer la primitive ou une intégrale définie : exemple Intégrale $[6x^2+2x+3]$ donne $2x^3+x^2+3x$. Pour une intégrale définie, on utilise les bornes exemple : Intégrale $[\sin(\mathbf{x}),\mathbf{0},\frac{\pi}{2}]$ donne la valeur de l'intégrale $\int_0^{\frac{\pi}{2}}\sin(x)dx=1$

8 **Factorisation**: la commande Factoriser permet de factoriser un polynôme, tandis que la commande Facteurs permet de lister les facteurs irreductible d'un polynome. Exemple **Factoriser**($\mathbf{x}^6 - \mathbf{1}$) renvoie $(x-1)(x+1)(x^2-x+1)(x^2+x+1)$ et **Facteurs**($\mathbf{x}^6 - \mathbf{1}$) renvoie $\{\{x-1,1\},\{x+1,1\},\{x^2-x+1,1\},\{x^2+x+1,1\}\}$

- 8 **Factorisation**: la commande Factoriser permet de factoriser un polynôme, tandis que la commande Facteurs permet de lister les facteurs irreductible d'un polynome. Exemple **Factoriser** $(\mathbf{x}^6 \mathbf{1})$ renvoie $(x-1)(x+1)(x^2-x+1)(x^2+x+1)$ et **Facteurs** $(\mathbf{x}^6 \mathbf{1})$ renvoie $\{\{x-1,1\},\{x+1,1\},\{x^2-x+1,1\},\{x^2+x+1,1\}\}$
- 9 **Résolution des équations** : la commande Résoudre permet de résoudre les équations. Exemple $S = Résoudre[x^2 + x 2 = 0]$ fournit l'ensemble de solutions $S = \{x = -2, x = 1\}$. La même commande permet de résoudre les inéquations exemple : Résoudre $[x^2 + x 2 < 0]$ renvoie l'intervalle $\{-2 < x < 1\}$

- 8 **Factorisation**: la commande Factoriser permet de factoriser un polynôme, tandis que la commande Facteurs permet de lister les facteurs irreductible d'un polynome. Exemple **Factoriser**($\mathbf{x}^6-\mathbf{1}$) renvoie $(x-1)(x+1)(x^2-x+1)(x^2+x+1)$ et **Facteurs**($\mathbf{x}^6-\mathbf{1}$) renvoie $\{\{x-1,1\},\{x+1,1\},\{x^2-x+1,1\},\{x^2+x+1,1\}\}$
- 9 **Résolution des équations** : la commande Résoudre permet de résoudre les équations. Exemple $S = Résoudre[x^2 + x 2 = 0]$ fournit l'ensemble de solutions $S = \{x = -2, x = 1\}$. La même commande permet de résoudre les inéquations exemple : Résoudre $[x^2 + x 2 < 0]$ renvoie l'intervalle $\{-2 < x < 1\}$
- 10 **Limite d'une fonction** : $Limite(f, x_0)$ permet de calculer la limite de la fonction f au point x_0 . Exemple Limite(sin(x)/x, 0) renvoie 1.

- 8 **Factorisation**: la commande Factoriser permet de factoriser un polynôme, tandis que la commande Facteurs permet de lister les facteurs irreductible d'un polynome. Exemple **Factoriser**($\mathbf{x}^6-\mathbf{1}$) renvoie $(x-1)(x+1)(x^2-x+1)(x^2+x+1)$ et **Facteurs**($\mathbf{x}^6-\mathbf{1}$) renvoie $\{\{x-1,1\},\{x+1,1\},\{x^2-x+1,1\},\{x^2+x+1,1\}\}$
- 9 **Résolution des équations** : la commande Résoudre permet de résoudre les équations. Exemple $S=R\acute{e}soudre[x^2+x-2=0]$ fournit l'ensemble de solutions $S=\{x=-2,x=1\}$. La même commande permet de résoudre les inéquations exemple : Résoudre $[x^2+x-2<0]$ renvoie l'intervalle $\{-2< x<1\}$
- 10 **Limite d'une fonction** : $Limite(f, x_0)$ permet de calculer la limite de la fonction f au point x_0 . Exemple Limite(sin(x)/x, 0) renvoie 1.
- 11 **Point d'inflexion** : cette commande permet de déterminer les points d'inflexion d'une fonction. Exemple $PointInflexion[x^3]$ retourne (0,0)

Applications (cinématique du point)

On considère le point mobile M(x(t),y(t)) définit par son équation horaire $\left\{ \begin{array}{l} x(t)=t\cos(t) \\ y(t)=-\sin(t) \end{array} \right. 0 \leq t \leq 5$

1 Calculer le vecteur vitesse $\overrightarrow{v}(t)$ et le vecteur acélération $\overrightarrow{\gamma}(t)$

Applications (cinématique du point)

On considère le point mobile M(x(t),y(t)) définit par son équation horaire $\left\{ \begin{array}{l} x(t)=t\cos(t)\\ y(t)=-\sin(t) \end{array} \right. 0 \leq t \leq 5$

- 1 Calculer le vecteur vitesse $\overrightarrow{v}(t)$ et le vecteur acélération $\overrightarrow{\gamma}(t)$
- 2 Représenter dans une figure animée la trajectoire du point mobile, le vecteur vitesse et le vecteur accélération